

3000 West Plumb Lane Reno, Nevada 89509 www.radblue.com

Release Notes – RadBlue System Tester (RST)

Version 1.8 [released: December 8, 2008]

High-Level Summary
In this release, we added support for installable packages as well as an ID database for the
WAT Transfer Insert ID function. In addition, RST now accepts GZIP messages.

New Features

• RST now supports installable package files. For more information on using installable
packages as well as creating your own installable packages for use with the RST
SmartEGM, see Bulletin 03: Installable Packages.

o The SmartEGM can download and install packages containing chunks of
SmartEGM configuration files expand to become actual gamePlay devices in the
SmartEGM. The process by which packages are installed is:

1. A parser analyzes the contents of the package and then verifies that the
package is semantically valid and complete with respect to the smartegm-
config.xml schema.

2. If this package is installable, a commsClosing command is sent to all active
hosts, and then the new gamePlay devices are installed, updating the
SmartEGM data model. The new devices are appended to the end of list of
game play devices (starting at the next available deviceId), and are all owned
by the EGM.

3. RST is then restarted. On restart, the data model and all references are
verified. A commsOnline command is then sent to all registered hosts.

4. The commConfig host can then use commConfig commands to set the
owner, and the configurator host values for these new devices, after which a
commsOnline command is automatically sent to these newly assigned hosts.

5. The configuration host can then use the appropriate optionConfig
commands to configure these new devices.

o In the package.xml file, module-type equals a “G2S_game” indicates there are
new gamePlay devices in the modules file.

o The filename attribute must point to a SmartEGM configuration file in the module
directory portion of the package.

http://www.radblue.com/documentation/bulletins.htm

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 2

o A sample RadBlue installable package is available for download from the RadBlue
web site:
http://www.radblue.com/downloads/smartegm/packages/package-4.zip

o The package payload is a smartegm-config.xml file, containing one or more
gamePlay devices. The device IDs used in the file will be replaced when the
devices are added to the SmartEGM data model, but are still required to be non-
zero and unique within this file.

o When a RadBlue package is added to the EGM, if the package.xml file indicates
the modules it contains can be installed, the package validation ensures that only
gamePlay devices are contained in the payload and that the device IDs are non-
zero and unique. The smartegm-config.xml snippet is then validated against
the schema for SmartEGM configuration files.

o New gamePlay devices installed by this process are considered SmartEGM
devices, so they appear in the descriptor list and are available for configuration.

Improvements

• Support for an ID database has been added to the Insert ID option on the SmartEGM
WAT Transfers tab. This is the same database used to populate the Insert ID option
on the Player Verbs tab.

The id-rst.xml database is created when you install RST, and automatically provides
a randomly selected ID number when you click Insert ID under the SmartEGM WAT
Transfers tab. By default, this database is populated with the following IDs:

o 22222222
o 12345678
o 11111111

The id-rst.xml database is used
with the SmartEGM user interface
only. It is separate from the databases used with Tiger verbs.

• RST now accepts GZIP messages, which are compressed into HTTP_STACK, to the
same path as non-GZIP messages.

• The getTransportOptions command has been modified to return NO_GZIP and
GZIP_IN_HTTP_STACK.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 3

Corrections
• Errors for the eventHandler command were being sent with a commandId of zero

(0). Now, errors are correctly assigned the next commandId for the applicable host.

• The S2S simulator now correctly reverses the fromSystem and toSystem attribute
values in the s2sAck command.

• The SmartEGM now correctly handles unsupported events.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 4

Version 1.7 [released: November 3, 2008]

High-Level Summary
In release 1.7, we have added a new Snapshot and Compare feature that allows you to
capture EGM data model meters, options, and status values at different points in your
testing, and compare them against one another. In addition, we’ve added Tiger script
support for an ID database and a voucher database.

New Features

• A Snapshot and Compare feature has been added to the RST SmartEGM.

To use the Snapshot and Compare feature, go to: SmartEGM > Data Model Viewer
> View Data Model, and click Snapshot. When you have at least two snapshots,
click the Compare Data Models tab, select two snapshots, and click Compare. The
Compare Snapshot Deltas screen displays the comparison (below).

For more information, see the Snapshot and Compare document.

• A new Tiger verb, tiger:DataModel.snapshot, has been added. This verb allows
you to take a snapshot of the EGM data model at any time during a Tiger script. See
About the tiger:DataModel.snapshot Verb for more information.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 5

Improvements
• The following Tiger verbs have been added to RST:

o Human.insertIDFromDatabase
o Human.removeIDToDatabase
o Human.insertVoucherFromDatabase
o Human.createVoucherToDatabase
o if-voucher-available

For information on using the new tiger verbs, see Using Tiger Scripts with a Voucher
Database and Using Tiger Scripts with an ID Database.

For detailed information on each verb, see ID Database and Voucher Database Tiger
 Verbs.

For information on the example Tiger scripts installed with the SmartEGM, see About
the Example Tiger Scripts.

• Support for a voucher database has been added to the SmartEGM Player Verbs user
interface.

The voucher database is a file of
voucher numbers that are used to
validate redeemed vouchers.
The voucher-rst.xml is created
automatically when you click Create
Voucher under the SmartEGM Player
Verbs tab. Each time you click
Create Voucher, another voucher is
inserted into the database

When you click Insert Voucher, a randomly selected voucher is removed from the
voucher database and is used as the default validation ID.
The voucher-rst.xml database is used with the SmartEGM user interface. It is
separate from the databases used with the new Tiger verbs.

For more details on the location of the databases and how to use them with your
host system’s data, see Using Tiger Scripts with an ID Database and Using Tiger
Scripts with a Voucher Database.

• Support for an ID database has been added to SmartEGM Player Verbs user interface.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 6

The ID database is a file of player IDs.

The id-rst.xml database is created when you install RST, and automatically provides
a randomly selected ID number when you click Insert ID under the SmartEGM
Player Verbs tab.

By default, this database is populated with the following player IDs:

o 22222222
o 12345678
o 11111111

The id-rst.xml database is used with the SmartEGM user interface only. It is
separate from the databases used with the new Tiger verbs.

• In accordance with the G2S Specification, the SmartEGM no longer allows a device ID

equal to zero (0). Therefore, logList and logStatus requests and responses
must be constructed using a non-zero device ID that the requestor can access. This
change affects the log commands in all classes.

Example 1
Previously, if a host requested the gamePlay recall log through deviceId=4, the
SmartEGM would return the log using deviceId=0 to indicate the log is for the class,
rather than just one device. Now, the deviceId of the request is used in the response
even though the response represents class-level information.

Example 2
Previously, SmartEGM allowed a host to request the logStatus or logList using
deviceId=0. Now, the deviceId must be greater than zero (0). This also allows
SmartEGM to determine whether the requesting host has guest access.

• The Tiger verb, Human.playSimpleGame, has been extended to include
progressive games. See About the Human.playSimpleGame Tiger Verb for more
information.

• The Tiger verb attribute, tiger:duration, has been enhanced. See About the
tiger:duration Attribute for more information.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 7

Corrections

• Wager categories are now displayed for game play devices in the SmartEGM Data
Model Viewer.

• Game Denominations are now displayed for each gamePlay device in the SmartEGM
Data Model Viewer.

• RST now returns a G2S_APX001 (Invalid Host Identifier) error when an invalid host
ID is received.

• The build date on the "About RST" screen is now updated whenever a build occurs.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 8

About the Human.playSimpleGame Tiger Verb
The Human.playSimpleGame verb simulates the play of a simple, non-central
determination game, a secondary game, and/or a progressive game. Progressive game play
attributes appear in bold in the XML Representation Summary below. A sample code snippet
for a progressive win appears in the “Examples” section.

XML Representation Summary
Attribute Restrictions Default Description

tiger:credits-to-wager-
cashable

=xs:int 0 Number of cashable credits wagered.

tiger:credits-to-wager-non-
cashable

=xs:int 0 Number of non-cashable credits
wagered.

tiger:credits-to-wager-
promo

=xs:int 0 Number of promotional credits
wagered.

tiger:denom-id =xs:long none Denomination to be wagered.
tiger:device-id =xs:int -2 Device identifier. “-2” indicates that

the first available device ID will be
used.

tiger:primary-win =xs:int none Number of credits awarded for the
handle pull.

tiger:remote-key-off-
timeout

=xs:int 60000 Indicates how long the script waits
for the remote keyoff before timing
out.

tiger:play-secondary-game-
count

=xs:int 0 Number of double-or-nothing
secondary games to play, if the
primary-win is greater than zero (0).
The first secondary game takes the
primary-win value as the amount
wagered. For all games except the
last secondary game, the secondary
amount won equals twice the amount
wagered.

tiger:win-final-secondary-
game

=xs:boolean false Indicates whether the final secondary
game is a win or loss. If this attribute
is set to “false,” the final win equals
zero (0).

tiger:progressive-hit =xs:Boolean False Indicates whether game play
generates a progressive hit.

tiger:win-level-index =xs:int -1 Defines the win-level index for
the progressive hit.

tiger:win-to-handpay =xs:boolean false Indicates whether the game win
should go to a handpay.

tiger:handpay-action =("HANDPAY" |
"CREDIT" |
"VOUCHER" |
"WAT" |
"REMOTE")

HANDPAY Indicates how the handpay is paid.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 9

Examples

• Plays a simple game on Game Play device 7, where two $0.25 cashable credits are
wagered. A progressive win is hit for win level index 1. One thousand $0.25 cashable
credits are won. A handpay is generated and paid by voucher.

<tiger:Human.playSimpleGame tiger:device-id="7" tiger:denom-id="25000"
tiger:credits-to-wager-cashable="2" tiger:progressive-hit=”true” tiger:
tiger:win-level-index=”1” tiger:primary-win="1000" handpay="true"
tiger:handpay-action="VOUCHER"/>

• Plays a simple game on Game Play device 7, where two $0.25 cashable credits are
wagered and one $0.25 cashable credit is won. The game play causes a handpay
event that is paid to a voucher.

<tiger:Human.playSimpleGame tiger:device-id="7" tiger:denom-id="25000"
tiger:primary-win="1" tiger:credits-to-wager-cashable="2" tiger:win-to-
handpay="true" tiger:handpay-action="VOUCHER"/>

• Plays a simple game on Game Play device 7, where two $0.25 cashable credits are

wagered and one $0.25 cashable credit is won. The game play causes a handpay
event. The game play device waits until a remote keyoff event is received from the
host. If the remote keyoff is not received in 10 minutes, the
Human.playSimpleGame verb fails.

<tiger:Human.playSimpleGame tiger:device-id="7" tiger:denom-id="25000"
tiger:primary-win="1" tiger:credits-to-wager-cashable="2" tiger:win-to-
handpay="true" tiger:handpay-action="REMOTE" tiger:remote-key-off-
timeout="600000"/>

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 10

About the tiger:duration Attribute
The tiger:duration attribute can be used in the following ways:

• as a constant number of iterations
• as a random number of iterations
• as an elapsed time

Constant Number of Iterations
If the value of the attribute is a string that defines a positive integer value (x), the loop is
executed exactly x iterations. This use of the tiger:duration attribute is exactly the same as
using the iterations attribute except the value of the attribute is a string and not an integer.

Example: Run the script 200 times.

 <tiger:repeat tiger:duration="'200'" />

Random Number of Iterations
If the value of the attribute is a string of the pattern [low, high], the loop is executed a
random number of times in the range [low, high].

If the value of the attribute is a string of the pattern [high], the loop is executed a random
number of times in the range [1, high].

Example: Run the script, randomly, between 10 and 20 times.

 <tiger:repeat tiger:duration="'[10, 20]'" />

Elapsed Time
This attribute specifies duration in terms of elapsed time. The value of the attribute is a
string value that defines the amount of time to execute the body of the loop.

The value of the attribute must be a relative time value, in the format D HH:MM:SS, where:

• D is the number of days (must be at least one digit)
• HH is the number of hours (must be two digits)
• MM is the number of minutes (must be two digits)
• SS is the number of seconds (must be two digits)

The loop iterates until the time duration has elapsed. The actual number of iterations
processed is dependent on what the script does and how fast the script executes on the host
machine.

Example: Run the script as many times as possible during a 10-minute period.

 <tiger:repeat tiger:duration="'0 00:10:00'" />

Note that the attribute content in each example is in single quotes. Single quotes allow you
to use a parameter name instead of a string constant.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 11

About the tiger:DataModel.snapshot Verb
The tiger:DataModel.snapshot verb causes the SmartEGM to take a snapshot of the
data model and store it under the given name.

This verb may be included in the following elements: tiger:action, tiger:catch,
tiger:else, tiger:repeat, tiger:then, tiger:tiger, tiger:try

XML Representation Summary
Attribute Restrictions Default Description

tiger:name xs:string none Name of the snapshot. This attribute
is required for this verb.

Examples
This SmartEGM stores the current data model to a snapshot with the name of "shapshot1."
The snapshot can be viewed through the Compare Data Model tab under the SmartEGM
Data Model Viewer.

<tiger:DataModel.snapshot tiger:name="snapshot1"/>

Take a snapshot of the data model, and name it “start.” Run the script. Then,
take another snapshot of the data model, and name it “end.”

<tiger:DataModel.snapshot tiger:name="start"/>
 <tiger:repeat tiger:iterations="loopDuration + 1">
 <tiger:Human.insertID tiger:device-id="1" tiger:id-number="12345678" />
 <tiger:Human.insertNotes tiger:device-id="1" tiger:currency-id="USD"
tiger:denom-id="100000"
 tiger:note-action="DROP" />
 <tiger:Human.insertCoins tiger:device-id="1" tiger:currency-id="USD"
tiger:denom-id="10000"
 tiger:coin-action="HOPPER" tiger:count="4" />
 <tiger:Human.playSimpleGame tiger:device-id="1" tiger:denom-id="1000"
tiger:primary-win="25000"
 tiger:credits-to-wager-cashable="5" />
 <tiger:Human.createVoucher tiger:device-id="1" tiger:credit-type="CASHABLE" />
 <tiger:Human.removeID tiger:device-id="1" />
 <tiger:DataModel.waitForEventQueueToDrain tiger:timeout="600000" />
 </tiger:repeat>
 <tiger:DataModel.snapshot tiger:name="end"/>

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 12

Using Tiger Scripts with an ID Database

To use ID database Tiger verbs – Human.insertIDFromDatabase and
Human.insertIDToDatabase – you must create a file of player IDs. These IDs should
correspond to the player IDs in your host system.

1. Open an XML file (using either an XML editor or by saving a text file with an .xml
extension).

2. Save the file.

If you are using a RadBlue smartegm-example-database-00X.xml Tiger script,
type id-example.xml for the file name. Otherwise, the file name should reflect the
value of the database-name attribute in the ID database Tiger verbs, in the format
id-[database-name].xml.

3. Save the file to the following location: [productDirectory] > radblue > gsa >
script > conf

4. Enter the following text, substituting the ID numbers for your host’s player IDs:

<id-database>
 <id number="22222222" lock="false"/>
 <id number="88888888" lock="false"/>
 <id number="12345678" lock="false"/>
 <id number="11111111" lock="false"/>
 <id number="99999999" lock="false"/>
</id-database>

The player ID numbers used in this example are valid if you are using the G2S Scope
(RGS).

5. For each id number, enter “false” for the lock attribute. The lock attribute allows you

to indicate that a player ID is in-use (inserted into an EGM). The lock attribute is
automatically set to “true” when an ID is in use.

6. Save and close the file.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 13

Using Tiger Scripts with a Voucher Database

To use voucher database Tiger verbs – Human.insertVoucherFromDatabase and
Human.createVoucherToDatabase – you must create a file of voucher numbers. These
18-digit numbers should correspond to the voucher numbers in your host system.

If you are using a RadBlue smartegm-example-database-00X.xml Tiger script, a
voucher-example.xml voucher database file is automatically created and populated with
voucher numbers.

If you want to use voucher numbers from your host system, use the following procedure:

1. Open an XML file (using either an XML editor or by saving a text file with an .xml
extension).

2. Name the file.

The file name should reflect the value of the database-name attribute in the voucher
database Tiger verbs, in the format id-[database-name].xml. When you run your
custom Tiger script, the voucher numbers from the specified database will be used.

3. Save the file to the following location: [productDirectory] > radblue > gsa >
script > conf

4. Enter the following text, substituting the voucher numbers for voucher numbers in
your host system’s voucher database:

<voucher-database>
 <id number= "300011224778107571”/>
 <id number= "300021224778107572”/>
 <id number= "300031224778107573”/>
 <id number= "300041224778107574”/>
 <id number= "300051224778107575”/>
</voucher-database>

5. Save and close the file.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 14

ID Database and Voucher Database Tiger Verbs

Human.insertIDFromDatabase
The Human.insertIDFromDatabase verb simulates the insertion of an ID into an ID
reader. The ID number is read from the specified XML database.

XML Representation Summary
Attribute Restrictions Default Description

tiger:database-name = xs:string Name of id database.
tiger:device-id = xs:int -2 ID reader to use.
tiger:lock-id = xs:boolean true Indicates whether the ID record is to

be locked while in-use.

Example
Using the first ID Reader device insert the ID number read from the id-goldCards.xml
database. The ID number will be locked in the database, so that it cannot be reused until
it is removed from the ID reader.
<tiger:Human.insertID tiger:device-id="-2" tiger:database-name="goldCards"
tiger:lock="true"/>

Human.removeIDToDatabase
The Human.removeIDToDatabase verb simulates the removal of an ID from an ID reader.
The ID number that is removed is unlocked if it was locked when it was inserted.

XML Representation Summary
Attribute Restrictions Default Description

tiger:device-id = xs:int -2 ID reader device identifier.

Example
Using the first ID Reader device, remove the current ID and release it back to the id-
goldCards.xml database.
<tiger:Human.removeIDToDatabase tiger:device-id="-2" />

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 15

Human.insertVoucherFromDatabase
The Human.insertVoucherFromDatabase verb simulates the insertion of a voucher. The
voucher validation ID is randomly selected (and removed) from the specified database.

XML Representation Summary
Attribute Restrictions Default Description

Tiger:action = ("DROP" | "REJECT" |
 "RETURN")

"DROP" Indicates action taken at
the voucher’s insertion.

tiger:database-name = xs:string Name of database to get
voucher from.

tiger:device-id = xs:int “-2” Voucher device identifier.
id-reader-device-id = xs:int “-2” ID reader device identifier.
note-acceptor-device-id = xs:int “-2” Note acceptor device

identifier.

Example
Using the first voucher device, insert a voucher from the voucher-example.xml
database.
<tiger:Human.insertVoucherFromDatabase tiger:database-name="example"/>

Human.createVoucherToDatabase
The Human.createVoucherToDatabase verb simulates the creation of a voucher. The
voucher's validation number is then stored in a database for later processing.

XML Representation Summary
Attribute Restrictions Default Description

tiger:create-type = ("CASHABLE" | "PROMO"
| "NON_CASHABLE")

"CASHABLE" Credit meter to use

tiger:database-name = xs:string Name of database to
insert voucher into.

tiger:device-id = xs:int “-2” Voucher device
identifier.

id-reader-device-id = xs:int “-2” ID reader device
identifier.

Example
Using the first voucher device, take all of the current credits off of the cashable credit
meter and create a voucher using that value. The voucher's validation number is stored
in the voucher-example.xml database.
<tiger:Human.createVoucherToDatabase tiger:device-id="-2" tiger:credit-
type="CASHABLE" tiger:database-name="example"/>

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 16

if-voucher-available
The if-voucher-available verb allows you to have conditional logic that executes if
there is a voucher available in the specified database. If there is a voucher available, the
verbs in the “then” block are executed. If there are no vouchers available in the database,
the verbs in the “else” block are executed.

XML Representation Summary
Attribute Restrictions Default Description

tiger:database-name = xs:string Name of database to insert voucher
into.

Example
If there is a voucher available in the voucher-initial-load.xml database, insert a
voucher from that database, otherwise do nothing.
<tiger:if-voucher-available tiger:database-name="initial-load">

 <tiger:then>

 <tiger:insertVoucherFromDabase database-name="initial-load" />

 </tiger:then>

</tiger:if-voucher-available>

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 17

About the Example Tiger Scripts

Example Tiger scripts containing the new Tiger verbs are located in the following directory:
[productDirectory] > radblue > gsa > scripts > smart-egm

Example Tiger scripts can be used as templates for creating custom Tiger scripts.

File Name: smartegm-example-databases-001.xml
This Tiger script:

1. verifies that the ID reader, voucher, note acceptor, and communications devices exist
and are enabled (waiting up to five minutes for each to be enabled).

2. inserts a player ID from the id-example.xml database.
3. inserts five one-dollar notes.
4. cashes out the credit meter to a voucher, which is inserted into the voucher-

example.xml database.
5. inserts voucher from the voucher database using the default voucher and note

acceptor devices.
6. removes ID to the ID database.
7. repeats steps 2 through 6 ten times.

File Name: smartegm-example-databases-002.xml
This Tiger script:

1. verifies that the ID reader, voucher, note acceptor, and communications devices exist
and are enabled (again waiting up to five minutes for each).

2. inserts a player ID from the id-example.xml database.
3. inserts 10 one-dollar notes.
4. cashes out the credit meter to a voucher, which is inserted into the voucher-

example.xml database. Steps 2 and 3 are repeated 10 times to create 10 vouchers
in the database.

5. Next, 10 vouchers are inserted from the voucher database, using the default note
acceptor and voucher devices.

6. Finally, the player ID is removed from the ID reader, clearing the flag in the
database.

File Name: smartegm-example-databases-003.xml
This Tiger script:

1. inserts a player ID from the ID database, but does not lock the ID.
2. removes the player ID from the ID reader.
3. repeats script ten times.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 18

Version 1.6 [released: September 29, 2008]

High-Level Summary
In this release, we improved the efficiency of the SmartEGM and addressed a few minor
issues.

Improvements

• The SmartEGM has been modified
to load configuration files more
efficiently.

• The SmartEGM Configuration File
Loader now updates while the
SmartEGM configuration file is
being loaded into the Data Model
Viewer. A percentage appears on
the status bar to let you see
exactly where the file is in the
load process.

• If XML content in a message is
greater than 2MB, the following
error message is logged as a
warning in the Debug Log: “XML
content is too large to store in SOAP transcript. Maximum length is 2MB. The first
1024 bytes:” (followed by the first 1024 bytes of the message).

• The Active Devices tab is obsolete, and it has been removed from the SmartEGM.

Corrections

• The SmartEGM has been modified to correctly handle an invalid transferLocation on
download.addPackage commands. In accordance with the GSA G2S specification,
a DLE103 error is returned.

• The cabinet G2S_egmPaidBonusNonWonAmt meter now updates correctly when a
noncash bonus is awarded.

• The BNE104 (bonus paid event) is now generated when a bonus is paid to the credit
meter.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 19

Version 1.5 [released: September 2, 2008]

High-Level Summary
In version 1.5, we have updated the Multicast transport to reflect the changes made in the
GSA Multicast Transport Protocol 1.0.7. We have added two new S2S desktops and corrected
several issues.

Improvements

• Multicast has been implemented in accordance with the GSA Multicast Transport
Protocol v1.0.7.

o Test vectors have been implemented (as recently discussed in the GSA
Transport Committee). Test vectors allow vendors to run test input against
mtp schemas and verify that the results are the same. Our Multicast
implementation has also been vetted by two major gaming manufacturers.

o Multicast now uses a separate command ID sequence for Multicast messages.
o New Multicast URI schemes have been added to RGS.

com-gamingstandards-mtp://[ip-address]:[port] – unencrypted but
authenticated, using UMAC.
com-gamingstandards-mtps://[ip-address]:[port] – encrypted and
authenticated, using UMAC-AE. (default)

• The SmartEGM now dynamically determines the value of attributes for commsOnline
messages except for the meterReset attribute. The value of the meterReset attribute
is based on the configuration file.

• Two new desktops have been created for RST – S2S_Edge and S2S_Central. The new
desktops make it easier to use two versions of the tool as host and edge servers.

• The timeToLive attribute is automatically set to zero (0) on command responses and
notifications. The timeToLive attribute is the number of milliseconds an endpoint
should wait before ignoring a command. The timeToLive attribute remains the same
on request messages.

Corrections

• The meter names for voucher devices have been corrected.
• If there is no event or meter subscription set when the commsOnline command is

created, the SmartEGM now sets the subscriptionLost attribute properly.
• RST now supports XML escape sequences in the EGM ID.
• The SmartEGM Data Model Viewer (DMV) now displays the correct value of the

hostEnabled attribute for all devices.
• The Transcript Control now accepts ASCII 7 (“tab”) characters in the XML payload.
• The SmartEGM now handles the noteAcceptor.getNotesAccepted command correctly.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 20

Version 1.4 [released: June 30, 2008]

High-Level Summary
In release 1.4, we have made several usability improvements to RST in addition to
corrections to the workings of the commConfig class.

Improvements

• A new SmartEGM configuration file was added that causes the SmartEGM to correctly
send all messages through the RadBlue Protocol Analyzer (smartegm-config-
rpa.xml).

• If you are using RadBlue tools on a Linux PC that is not connected to a network, you
must issue the following command to allow the operating system to recognize the
network device: /sbin/ifconfig <deviceID> up

<deviceID> should be replaced with the network adapter containing the MAC
address that was used to generate the license file. The most common device ID is
eth0, making the command: /sbin/ifconfig eth0 up

Updated Linux installation instructions are available here:
http://www.radblue.com/documentation/linux_readme.txt

• A progress screen has been added to the SmartEGM so the user can see the status of
the configuration file load operation.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 21

• The following attribute names have been changed for clarity in the SmartEGM Data
Model Viewer in the general group for each device:

o configId has been changed
to configHostId

o ownerId has been changed
to ownerHostId

Corrections

• The SmartEGM has been updated to handle denomination ID (denomId) values up to
9,999,999,999.99.999, as defined by version 1.0.3 of the G2S protocol.

• The RadBlue package files available on our web site (package-1.zip and package-2.zip),
did not work properly with all Zip utilities. The new package versions work correctly.

• Some shortcomings were discovered in the way that the SmartEGM was handling
associated data in event subscriptions. These issues have been corrected.

• The SmartEGM was always sending an eventReport as a G2S_request. If persist
equals “false,” the event is now sent as a G2S_notfication.

• The SmartEGM now correctly handles anonymous FTP transfers when attempting to
download a package.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 22

• The following updates have been made to the commConfig implementation:
o The setCommConfig command handler has been modified so that the SmartEGM

communicates with affected hosts when the configuration of a device is changed.

o The SmartEGM now correctly handles the changing of a device’s owner or
configuration host.

o A commsClosing command is now sent when the communications channel
restarts. It is followed automatically with a commsOnline command. The
commConfig.setCommChange is an example of when this reboot sequence
occurs.

commConfig Implementation Note

The default for the canModRemote attribute in the hostIndex table is always
true. This attribute must be true for the EGM (hostid=0 and hostIndex=0),
in order to be able to change the configuration host or owner host of a
device from a zero (0) to a non-zero number.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 23

Version 1.3 [released: May 27, 2008]

High-Level Summary
In release 1.3, the progressive class has been added, including two new player verbs,
progressive data model information, and a new Progressives tab. A new security (SSL)
options have been added to the Configure screen.

New Features

• RST now supports the progressive class. See Using Progressive.

o A new Tiger/XML verb, tiger:Progressive.getHostInfo, has been added to
request progressive host information.

o Get Progressive Host Info and Play Progressive Game buttons have been
added to the SmartEGM Player Verbs tab.

o The following cabinet attributes determine whether a win is paid to the credit
meter or as a handpay:

Attribute Description
largeWinLimit Maximum win payable by the EGM.
maxCreditMeter Maximum value permitted on the credit meter.
maxHopperPayOut Maximum value that can be paid from the hopper before

a handpay, voucher, or WAT transaction is required.
splitPayOut When maxHopperPayOut is reached, indicates whether

the maxHopperPayOut amount should be paid from the
hopper.

If the paymentMethod attribute in the setProgressiveWin command sent by
the progressive host is payHandpay, the SmartEGM performs a local handpay.

If the progressive win is greater than the cabinet’s largeWinLimit profile setting,
the SmartEGM also performs a local handpay.

• A Progressives tab has been added to the SmartEGM. The Progressives tab
displays progressive information. The setProgressiveValue command updates
this screen.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 24

• Progressive information has been added to the SmartEGM Player Display.

When a setProgressiveWin command is received by RST, the textMessage
attribute is displayed in the Player Display.

• The following option have been added to Configure > Engine Options:

Filter G2S Set Progressive Values from Transcript – Select to exclude G2S
setProgressiveValue messages from the Transcript and Debug Log. Note
that setProgressiveValueAck messages are not filtered with this option. To
filter the progressive ACK and the G2S ACK, use the Filter option available in the
Transcript and Debug Log.

o RST can be configured to expect the progressive host to regularly send
setProgValue messages, or that feature can be disabled completely. To
configure the RST’s expectations, you can set the noProgInfo attribute using the
setOptionChange command or you can edit the progressive device parameters
in the smartegm-config.xml file. See Using Progressive for information on
editing the smartegm-config.xml file. The default value is 0, meaning the
setProgressiveValue commands are not expected).

Improvements
• A Security Options screen has been added to the Configure option on the menu

bar. From this screen, you can configure Secure Socket Layer (SSL) encryption
information for the application.

• Select Enable SSL
security control to
enable encryption for the
application.

• Select Approve all
certificates if you want
to use SSL encryption, but
are not concerned with
the validity of the
certificate authority.

• Enter the Key Store
Options for the client
and the certificate
authority.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 25

• You can now navigate through multiple XML Payload screens, which can be
accessed by double-clicking a message entry in the Transcript Control object.

Click the Previous and Next
buttons to move between
entries without exiting the
XML Payload window.

If you have applied sorting
options to the displayed
Transcript information, the
navigation will follow the sort
order of the main display
window.

Corrections

• A SmartEGM issue with the communications.getDescriptor command has
been corrected. Previously, the “include” flags were being handled incorrectly.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 26

Using Progressive
A progressive device is owned by a progressive host, which identifies the progressive ID, a
group of progressive levels or meters, and the levels in that group supported by the EGM.
There is exactly one progressive ID for each progressive device, and one or more
progressive levels for each progressive device.
Each progressive level can be hit by one or more win-level, in one or more gamePlay devices
in the EGM. The win-level is identified by a win level index (a unique identifier that
represents a combination of reel positions, for example, a full house or royal flush on a poker
game).
The mapping between progressive level and win level in a game is:

progressiveId + progressiveLevel gamePlay device + winLevelIndex + wager (# credits * denom)

Sample Progressive Flow

The event that updates the host’s progressive database is G2S_PGE101 (Progressive Money
Wagered). If this event is not generated by the EGM (not supported or not subscribed to by
the host), the host’s progressive values won’t update when a game is played. The
setProgressiveValue command is then used by the host to send the updated
progressive values back to the EGM.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 27

Configuring Progressives in the SmartEGM

1. Navigate to: ..\radblue\gsa\script\smart-conf\smart-egm.

2. Right-click smartegm-config.xml, and select Edit.

To configure progressives in RadBlue tools, you first need to configure the various win levels
supported by the gamePlay device. These values are typically characteristics of the game, so
they are not configurable through the G2S optionConfig class. The following excerpt is from
gamePlay device 1 in the sample smartegm-config.xml file distributed with the tools:

gamePlay Device Section

<edm:win-levels>
 <edm:win-level edm:index="1" edm:win-level-combo="1 Troll"

edm:progressive-allowed="true" edm:win-level-odds="1" />
 <edm:win-level edm:index="12" edm:win-level-combo="Lots o Trolls"

edm:progressive-allowed="true" edm:win-level-odds="21" />
</edm:win-levels>

Next, you need to configure the progressive device to tie a progressive level (meter) to a
particular gamePlay device and win-level. This is configurable through G2S and can be done
using the setOptionList command, or by editing the smartegm-config.xml file for the
progressive device you want to hit when the appropriate winning combination is hit in the
gamePlay device. A progressive data table is used in the progressive device to define the
relationship of the progressive level and the gamePlay win level:

Progressive Device Section – Progressive Data Table

<edm:option edm:option-id="G2S_progDataTable">
 <edm:parameters-table>
 <edm:parameters edm:param-id="G2S_progData">
 <edm:parameter edm:param-id="G2S_denomId">100000</edm:parameter>

<edm:parameter edm:param-id="G2S_themeId">
 RBG_sweatyTrolls</edm:parameter>

 <edm:parameter edm:param-id="G2S_paytableId">RBG_92</edm:parameter>
 <edm:parameter edm:param-id="G2S_numberOfCredits">3</edm:parameter>
 <edm:parameter edm:param-id="G2S_levelId">1</edm:parameter>
 <edm:parameter edm:param-id="G2S_gamePlayId">1</edm:parameter>
 <edm:parameter edm:param-id="G2S_winLevelIndex">1</edm:parameter>
 </edm:parameters>

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 28

To modify the amount of time that the SmartEGM waits for a setProgressiveValue
message from the progressive host (if at all), select the G2S_noProgInfo parameter and
change the value to the amount of time, in milliseconds, that you want RST to wait for
interval messages from the host. This time should be greater than the interval setting in the
host. Zero (0) disables this feature.

Progressive Device Section – Option Settings

edm:option-settings>
 <edm:option-group edm:option-group-id="G2S_progressiveOptions"

edm:option-group-name="G2S Progressive Options">
 <edm:option edm:option-id="G2S_protocolOptions">
 <edm:parameters edm:param-id="G2S_protocolParams">
 <edm:parameter edm:param-id="G2S_timeToLive">0</edm:parameter>
 <edm:parameter edm:param-id="G2S_requiredForPlay">false</edm:parameter>
 <edm:parameter edm:param-id="G2S_configurationId">0</edm:parameter>
 <edm:parameter edm:param-id="G2S_restartStatus">true</edm:parameter>
 <edm:parameter edm:param-id="G2S_useDefaultConfig">true</edm:parameter>
 <edm:parameter edm:param-id="G2S_progId">10</edm:parameter>
 <edm:parameter edm:param-id="G2S_noResponseTimer">30000</edm:parameter>
 <edm:parameter edm:param-id="G2S_noProgInfo">0</edm:parameter>
 </edm:parameters>
 </edm:option>

Get Progressive Information
This procedure allows you to query the progressive host to discover the progressive
identifiers and levels that the host supports.

1. From the SmartEGM layout, select Player Verbs.

2. Click Get Progressive Host Info.

3. Click the drop-down arrow, and select the Progressive Device ID to use for the
query.

4. Click Get Progressive Host Info.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 29

View Progressive Information
To view progressive device information, click the new Progressives tab on the SmartEGM
layout. This screen displays complete information about each progressive level, for each
progressive device. This display is updated in real-time whenever a setProgressiveValue
command is received from the host.

• Prog Device ID – Progressive device identifier.
• Prog ID – Progressive group identifier.
• Level ID – Identifier of progressive level within a progressive group.
• Prog Value – Current value of the progressive.
• Prog Value Sequence – Unique identifier set by the host in each setProgressiveValue

command.
• Game Play Device ID – Identifier of game play device that ties to this progressive.
• # of Credits – Number of credits required to hit specified progressive.
• Denom ID – Denomination that must be played for the progressive.
• Win Level Index – Paytable win index that hits this progressive.
• Win Level Odds – Odds of hitting this index in the paytable.

View Progressive Settings for the EGM

1. From the SmartEGM layout, click Data Model Viewer.

2. Navigate to: egm > devices > progressive-1 > options >
G2S_progressiveOptions.

3. Click G2S_progDataTable to view information about the current progressive data
table (progressive-level-to-gameplay-win-level linkages).

4. Click G2S_protocolOptions to view progressive option settings.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 30

Play a Progressive Game
1. From the Player Verbs object, click Play Progressive Game.

2. Under Game Play Options, click the Game Play Device ID drop-down arrow, and
select the progressive device that you want to play.

3. Click the progressive you want to hit from the Progressive Levels section. The
Progressive Levels section lists all available progressives for the selected progressive
device. Note that the denomination (Denom ID) field changes to the required
denomination for the progressive you selected.

4. Enter the number of credits you want wager, using the Cashable Wager, Promo
Wager and Non-Cashable Wager combo boxes. You can allocate your wager in
any combination of the three wager types, but the total wagered must equal the
number of credits specified in the # of Credits field. If not, the Play Game button
will not activate.

5. Click Play Game.
After a progressive hit, the progressive is reset. You can see the reset on the
Progressives tab. The progressive prize displays on the Player Display:

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 31

Version 1.2 [released: April 25, 2008]

High-Level Summary
In this newest release, we added support for the G2S player class, a new EGM Transcript
Analysis report, and made even more improvements to the rest of the product.

New Features

2. RST now supports the G2S player class.

a. A Player Display panel has been added to the SmartEGM. See About the Player
Display.

b. Hot Player Support – Hot Player support is provided for carded and uncarded
players using the player class parameters. The appropriate events are sent based
on whether the player is using an ID. As per the specification, at the end of the
hot player period, the hot player level resets to zero (0). Hot player determination
can be based on a single meter or an RPN expression.

c. Player Rating Support – Player ratings, metering, event, messages, and
countdowns are supported, including player and generic override point calculation
formulas (using a single meter or an RPN expression for the basis).

d. SmartEGM Configuration File Changes – A new player attribute, thread-sleep-
timer, has been added to the smartegm-config.xml file. This attribute controls
how often the program checks whether the hot player time period has expired.
Once the hot player time period has expired, the timer is reset. The default time
is 60000 milliseconds (one minute).

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 32

e. A new EGM Transcript Analysis report has been added to the Transcript Control
object. The EGM Transcript Analysis report provides information about messages that
were sent from and received by the application for the period requested. See the
EGM Transcript Analysis Report for more information.

Sample EGM Transcript Analysis Report

Improvements
• The SmartEGM configuration file loader has been enhanced to perform additional

semantic error checking on the contents of the file (looking for errors related to the
host table, non-existent devices, and multiple instances of a single instance class).

• Several new Tiger/XML verbs have been added to the SmartHost Tiger/XML script. See
New and Modified SmartHost Tiger/XML Verbs.

• The Device Manager has been reworked to be more efficient, resulting in a faster
SmartEGM.

• If you add a non-RadBlue package to the SmartEGM and send a
gat.getComponentList command, you will not see your package in the list. This is
because the package does not have a validation algorithm assigned to it and G2S
1.0.3 does not allow components without at least one algorithm.

When the SmartEGM drops your package from the gat.componentList this fact will
be reported in the logger.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 33

• The communications device in the smartegm-config.xml file has a new attribute,
date-time-delta. This feature is useful for verifying that there is no drift between the
clock on the RST PC and the clock on the G2S Host PC. This is particularly important
when testing for environments without an NTP server.

If the value is non-zero, this attribute defines the number of milliseconds that the
dateTime value on the received G2S command can differ from the clock on the local
computer. If the difference is greater than the data-time-delta value, a warning
message is printed to the log panel.

If the value of the data-time-delta is zero, this feature is disabled. The default is zero
(0).

Note that this feature should be disabled if RST is running under a heavy load. CPU
starvation of the RST will generate false positives.

• In the smartegm-config.xml file, you can specify pre-loaded GAT components
(modules and packages). However, the smartegm-config.xml file does not
require any validation algorithms to be defined for a given component.

RST now automatically adds all seven algorithms listed in G2S (MD5, CRC16, CRC32,
SHA1, SHA256, SHA389 and SHA512) if no algorithms are specified in the
configuration file.

• Added support for user name and password in the transferLocation URL, in the
following format: ftp://user:password@host:port//path

In the addPackage and uploadPackage commands, RST uses the user name and
password in the following order:

1. User name and password from the transferParameters attribute.
2. User name and password from FTP URL.

If neither of the above exists, RST does not use a user name or password.

• Added support for startOffset >= endOffset in the gat.doVerification
command. The code now determines if the buffer to hash needs to wrap to the front
of the buffer (startOffset >= endOffset). This allows the EGM to support
gat.doVerfication as specified in the G2S protocol.

• A new attribute, honor-time-to-live, has been added to the communications device in
the smartegm-config.xml file. If set to true, the SmartEGM compares the current
time against the dateTime attribute as well as the timeToLive attribute in the G2S
command. If the current time is after the specified time-to-live, the message has
expired and an APX001 message is sent. Otherwise, the command is processed by
the SmartEGM.

If set to false (the default), the SmartEGM does not look at the time-to-live attribute.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 34

• You now have the option to disable message validation in the SmartEGM. To disable
message validation:

1. Quit RST.
2. Edit the bin > rst-launcher.xml file with a text editor.
3. Change the following line:

com.radblue.g2s.egm.datamodel.core.types.messages.validation=true
to:
com.radblue.g2s.egm.datamodel.core.types.messages.validation=false

4. Save and close the file.
5. Restart RST.

Corrections
• The Transcript database could not store commandId values greater than 32

bits. Sending one of our products a commandId greater than 32 bits would result in
an exception being displayed in the Logger panel and the transcript entry would not
be added to the database.

• Prior to 1.2 the SmartEGM would return the requested options regardless of the host
access control rules specified in the G2S protocol. In particular, non-owner/non-
guest/non-config hosts could retrieve the options, which is a violation of the protocol.

• The SmartEGM interprets a missing startDateTime as Jan 1, 1970 and a missing
endDateTime as Jan 1, 3030 when the host sends a download.setScript
command with a Disable Condition field set to G2S_idle and no setting for the start
and end dates. Previously, the start and end dates were required to be set by the
host.

• In previous releases, the SmartEGM Status panel was not updated before the
SmartEGM was connected to the remote host. In 1.2 we immediately update the
SmartEGM status panel after loading the smartegm-config.xml file.

• Some customers may have seen weird behavior from the SmartEGM when their host
sent an MSX003 error to the SmartEGM. There were flaws in the logic that handled
this error code. We believe that the errors have been removed.

• The SmartHost in the RST 1.1 incorrectly handled the download.packageStatus
command when sent by the EGM as G2S request. This has been corrected.

• The SmartEGM is now conforms to the G2S specification with regard to handling illegal
communications.getDescriptor commands. If you send a
communications.getDescriptor command with a deviceId of zero (0), the SmartEGM
now returns the APX003 (Invalid Device ID) error. If you specify a particular device
class, the SmartEGM returns a descriptorList for the specified class only.

• When the EGM sends the transferParameters in the packageStatus and
packageLogList commands it receives from the host, (usually a user name and
password) it is now sends the transferParameters as asterisks (***********).

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 35

• A namespace has been added to the mtpCoordination element.

• RST now encrypts the mtp packet if the current key in the mtpCoordination object is
not all zeros. If the current key is all zeros, RST sends the packet in clear text.

• SmartEGM Data Model Viewer

• Packages have been added.

• Parameters values are updated in real-time.

• A list of supported events for each device is provided.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 36

About the Player Display
The Player Display shows messages sent from the host to the EGM, including welcome
messages, award messages, session messages, and card-out (“goodbye”) messages. The
host has the option to use substitution tokens, special characters that display as pre-defined
information (for example, player name or EGM ID) at the EGM.

If the EGM is not carded on a player-required token, the actual token text displays. For
example, if you use the player account number token (%a), you would see “%a” display
instead of a player number. Substitution tokens can be used for any message type, and are
described in Appendix E of the G2S Message Protocol document.

To assist testing efforts, player information is displayed in the left-hand corner of the screen.

• Card Reader Bezel displays the ID number of the inserted player card. A green border
indicates that a player card is inserted; a red border indicates that there is no player card
inserted at the EGM.

• Hot Player Level displays the current hot player level. Highest is the highest hot
player level the player has obtained. This field resets at card-in and card-out, and does
not require a player card-in for hot player determination to occur.

• Total Points displays the total player bonus points (initial point balance + current
session points). This field is initially populated by the playerSessionStartAck
command.

Note that if you send a setPointBalance command after a player session has started,
the initial point balance is adjusted to the new value; the number sent is not added to
the bonus point total.

Session Points indicates the bonus points accrued for the current session. The current
session includes: base point awards, player point awards, generic override points
awarded, and points awarded by the host (The individual values are in the player log
record). This field is only applicable to carded players.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 37

• Countdown displays a player’s count until earning a specified number of bonus points.
Target is the number that the player must reach to receive the bonus point(s). Since
you have the option to count down or up, what you can expect to see in this field will
change. This field is populated by the player.setCountdownOverride command.

Example
If you are counting up to 20 with one point earned, you would see:
Countdown (Target) 1 (20)

If you are counting down from 20 with one point earned, you would see:
Countdown (Target) 19 (0)

New and Modified SmartHost Tiger/XML Verbs
Tiger/XML Verb Description Sample Usage*

tiger:if-vendor

Allows the script to use different sets
of verbs for EGMs from different
vendors.

<tiger:if-vendor
tiger:vendor="RBG">
 <tiger:then>
 ...
 </tiger:then>
</tiger:if-vendor>

tiger:if-package-available
/ tiger:then

Allows the script to perform
conditional logic based on the
presence or absence of a particular
package on the EGM.

To be present, the package must
exist in the most recent
package.packageList command
returned from the EGM.

<tiger:if-package-
available tiger:package-
id="RBG_package1">
 <tiger:then>
 <tiger:cabinet-
getCabinetStatus>
 </tiger:then>
 </tiger:if-package-
available>

If the package RBG_package1
exists on the EGM, the host
sends the G2S command
cabinet.getCabinetStatus.

tiger:download-
getPackageList

Requests the current list of installed
packages from an EGM.

tiger:download-
getDownloadProfile

Requests the download device profile
from an EGM.

tiger:download-
getDownloadStatus

Requests the download status from a
Tiger/XML script.

tiger:download-
setDownloadState

Changes the state of the download
device from a Tiger/XML script.

tiger:download-addPackage Allows a package to be added to an
EGM.

*See the \scripts\smart-host\rsh-example-download-oo1.xml Tiger script for a complete example.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 38

tiger:download-
deletePackage

Allows a package to be deleted from
an EGM.

tiger:download-
getModuleList

Requests a list of installed modules
from an EGM.

tiger:download-
installPackage

Installs packages on the EGM.

tiger:download-
uninstallPackage

Uninstalls packages from the EGM.

tiger:if-device-owner
tiger:device-
class="G2S_[class]" /
tiger: then

You can now have conditional logic in
a Tiger/XML for SmartHost script that
works off the owner status for a
device. That is, you can do
something (or not do something)
based on whether the SmartHost is
the owner of a given device.

 <tiger:if-device-owner
tiger:device-
class="G2S_cabinet">
 <tiger:then>
 <tiger:cabinet-
setCabinetState>
 </tiger:then>
 <tiger:else>
 <tiger:cabinet-
getCabinetStatus>
 </tiger:else>
 </tiger:if-device-
guest>

In this example, the
cabinet.setCabinetState
command is sent to the EGM if
the SmartHost is the owner of
the Cabinet device. If not, the
cabinet.getCabinetStatus
command is sent.

tiger:if-device-guest
tiger:device-
class="G2S_[class]" /
tiger:then

You can now have conditional logic in
a Tiger/XML for SmartHost script that
works off the guest status for a
device. In other words, you can do
something (or not do something)
based on whether the SmartHost is
the guest of a given device.

<tiger:if-device-guest
tiger:device-
class="G2S_cabinet">
 <tiger:then>
 <tiger:cabinet-
getCabinetStatus>
 </tiger:then>
 </tiger:if-device-
guest>

In this example, the
cabinet.getCabinetStatus
command is sent to the EGM if
the SmartHost is a guest of the
Cabinet device.

core:fail This command causes the Tiger/XML
script to terminate with an error. You
can include the attribute,
core:message, which is the
termination message that is printed
in the logger panel.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 39

core: exit This new verb causes the Tiger/XML

script to terminate with success. You
can include the optional attribute,
core:message, which is the
termination message that is printed
in the logger panel.

gamePlay-getGameDenoms

If you specify the device-id as -1,
it will send the G2S command
gamePlay.getGameDenoms to
all known game play devices. This
is a shortcut to adding individual
gamePlay-getGameDenoms
verbs.

gamePlay.setActiveDenoms

The
gamePlay.setActiveDenoms
SmartHost verb has been modified
with the addition of an all attribute
that allows you to perform an action
based on whether the SmartHost is
the owner of a given device.

<tiger:gamePlay-
setActiveDenoms
tiger:device-id="-1"
tiger:all="true" /

This example enables all
known denominations, on all
known game play devices.

gamePlay.setGamePlayState

This SmartHost verb now
supports a device-id of -1, which
applies the specified command to
all known game play devices on
an EGM. This allows you to affect
all EGM game play devices with a
single verb.

tiger:Transport.sendMyCo
mmand

Previously, the sendRaw Tiger
verb didn’t work well if you
wanted to send your own
commands in the outbound data
stream of the tool. This new Tiger
verb has an attributes class,
deviceId, and command to send.
Using this verb, the provided
command is inserted into the
outbound data stream
(dateTime, commandId, etc. are
automatically updated).

<tiger:Transport.sendMyCommand
tiger:device-
class="G2S_communications"
tiger:device-id="-2">
 <g2s:keepAlive
xmlns:g2s="http://www.gamingstan
dards.com/g2s/schemas/v1.0.3" />
</tiger:Transport.sendMyCommand
>

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 40

Version 1.1 [released: March 4, 2008]
We’ve moved to a new numbering system for 2008, and version 1.1 requires a 2008 license
(contact Russ@RadBlue.com if you haven’t received your new license). For the foreseeable
future, you can expect a new release of our tools around the end of each month. The minor
number (x.1) will increment each month, and the major number (1.x) will increment on
significant events in the life of the tool.

High-Level Summary
In this newest release, we added the G2S handpay class to the SmartEGM. Significant
improvements have been made to the download class, where you can now download, verify,
gat, and install a RadBlue package from our website.

New Features

• New versioning convention – RGS has a new versioning convention: [major.minor].
This versioning convention replaces the previous version 1.0.3 build x. The last RGS
version using the old convention is 1.0.2 build 12.

• Support has been added for the G2S handpay class. See About Handpay for more
information.

• Because of the problems with implementing SOAP 1.2, we are dropping back to SOAP
1.1 for the moment, but will pay close attention to the GSA transport committee’s
progress on this issue.

Improvements

• The SmartEGM Configuration file loader has been enhanced to perform additional
semantic error checking on the contents of the file (looking for errors related to the
host table, non-existent devices, multiple instances of a single instance class, etc.).

• The SmartEGM now supports filtering based on the attributes in the
communications.getDescriptor command (for example, a specific class, device,
includeOwners, includeConfigs, etc.)

• download – The download class support in the SmartEGM was dramatically improved
(it was essentially rewritten). Please see the About Download at the end of this
document for an extended discussion of the changes related to this class.

• optionConfig – SmartEGM now supports getOptionList filtering, and has had
another round of general tuning. The tool now supports GSA plus third party options.
Implementation details for including third party options in the SmartEGM will be
provided upon request.

• gat – GAT can now verify components and modules (identified in the smarteg-
config.xml file). With the new download support, downloaded packages, and
modules resulting from the installation of a RadBlue package, are also included in the
component list, so verifications can also be performed on them.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 41

• wat – G2S WAT class support is now complete in the SmartEGM, supporting host
and EGM controlled WAT transfers, key exchanges, etc. In the default configuration,
WAT device 1 is hostControlled and device 2 is EGM controlled. The choices available
on the new WAT Transfers GUI are controlled by the G2S_interfaceMode parameter
in the SmartEGM configuration file. See About WAT for an extended discussion.

• EGM Reset button – A new Icon was added to Player Verbs panel that allows the User to
reset the SmartEGM’s cabinet status to the happy state, in case something gets out of
whack.

• S2S - The S2S host script now has improved support for the
voucher.authorizeVoucher command. To make the script more realistic, the
voucher.authorizeVoucher response is built from the attributes sent by the Edge
system through the voucher.redeemVoucher request.

• S2S – S2S Edge System GUI – A new button is provided to grab the latest URLs from
the configuration file.

Corrections
• optionConfig – The SmartEGM now correctly uses the same transactionId for each of

the commands in an optionConfig sequence.
• The host can now request an option list (getOptionList) for a single device. (428)

• In the SmartEGM, the bonus.cancelBonusAward command is now handled
properly (it used to return a bonus.error response). However, if you attempt to
cancel a non-existent bonus or a bonus that has already been awarded, a
bonus.error response is still returned.

• SmartEGM – The bonus log was being accessed by bonusId, which proved
problematic. The SmartEGM now uses the transactionId which has a better chance of
being unique.

• The PackageStatus command sent in response to the download.addPackage
request now correctly reports the package status. Previously, it reported the package
as being available, which was incorrect.

• SmartEGM – now sends a commsClosing command when shutting down, even if it is
in the Synch state (waiting for the communications device to be host enabled).

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 42

About Handpay
• Handpay, voucher and WAT keyoff types are supported. Additionally, handpays

resulting from game win can also be paid to the credit meter, and cancel credit
handpays can be cancelled.

• Partial handpays are not supported – The entire handpay amount must be keyed off
to a single handpay type (cash, voucher, or WAT).

• If a single handpay event results in multiple handpay requests (as is often the case
with a cashout to handpay), these can be keyed off individually.

• When keying-off a handpay to WAT, the WAT device with the cashOutToWat
attribute set to true will be used for the transfer.

• When a handpay is created, the Cabinet goes into an egmLocked state, which is not
accessible from G2S. This condition is shown in the Cabinet Locked field in the EGM
Status panel. A new GUI button has been added to reset the EGM (if necessary).

• Four new Tiger Verbs have been created (and one has been modified) to support
handpay functionality:

• Human.playSimpleGame was modified so you can now specify handpay
action (a local handpay will automatically follow) or you can specify REMOTE,
in which case the SmartEGM will wait for remote-key-off-timeout milliseconds
for a remote keyoff to arrive, after which the win will just go to the credit
meter.

• <tiger:Human.cashOut tiger:method="HANDPAY"/> - All the funds in the
player's credit meters are sent to a handpay (cancel credit).

• <tiger:Human.keyOff tiger:method="VOUCHER"/> - All outstanding
handpay commands will be keyed-off to vouchers (or HANDPAY, CREDIT, or
WAT).

• <tiger:DataModel.waitForHandpayKeyOff tiger:timeout = “30000”/> -
Script will wait for 30 seconds for a remote keyoff from the host.

• <tiger:Human.cancelCancelCreditHandpay/> - Cancels the outstanding
cancelCredit Handpay request.

As always, details of all Tiger verbs can be found in the interactive glossary in the
Start Program group for RST.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 43

Using Handpay in RST

Use Player Verbs to test various handpay scenarios, such as:

• Create a Handpay: Insert Note and then Cash Out to
Handpay

• Create a Handpay through the Play a Simple Game
Verb: Select Win to handpay? and the type of handpay you
want to create.

• Create a Handpay through the Play a Simple Central Game Verb: Select Win to
handpay? and the type of handpay you want to create.

• Keyoff a Handpay: Key Off Handpay

• Cancel a Cancel-Credit Handpay: Key Off Handpay

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 44

About Download
Download has been rewritten in RST to enhance download functionality, add upload
capability, and to provide a more complete emulation of the class. Some of the highlights of
the rewrite follow:

• cmdSequence, used to order the operations inside a given setscript command, now
has improved handling (commands are ordered, and we check for dupes and skips in
the cmdSequence values within the setScript command).

• The download class now fully supports the download.addPackage command. The
SmartEGM downloads the specified file through the addPackage command. We
support two transports:

1. FTP - if the transportLocation attribute starts with ftp://, RST uses FTP to
fetch the package. The transportParameters attribute can specify a
username/password combination in the form username;password. If the
username and password is present and in that form, the SmartEGM will use
those given credentials.

2. HTTP - if the transportLocation attribute starts with http://, we will use
HTTP to fetch the package. The transportParameters attribute is currently
ignored for HTTP.

Note that the package file is downloaded to the following directory:

../smart-conf/smart-egm/packages/<EGM-ID>/<package-name>.pkg

<EGM-ID> is the ID of the EGM and <package-name> is the name of the package in
the addPackage command. These files are retained between restarts of both the
SmartEGM and the RST. (389)

• The SmartEGM now supports external file references for components and packages.

• Downloaded packages are automatically added to the SmartEGM configuration file, so
if you restart the tool using the “-updated” version of the configuration file, the new
files are persisted.

• Downloaded packages and installed modules can be seen and verified through
gat.componentsList.

The SmartEGM configuration file has been modified to help control FTP and HTTP package
transfers with the addition of four new attributes:

• http-transfer-timeout – The timeout (in milliseconds) to use when using HTTP to
transfer a package.

• http-transfer-max-retries – The maximum number of retry attempts when using HTTP
to transfer a package.

• ftp-transfer-timeout – The timeout (in milliseconds) to use when using FTP to
transfer a package.

• ftp-transfer-max-retries – The maximum number of retry attempts when using FTP to
transfer a package.

These transfers now have connection timeout values and retry control. Read the
SmartEGM Config File XSD for more info on these attributes.

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 45

Using Download Packages

A fully functional package system has been added to RST.

When the SmartEGM gets a .zip file, it looks in the root directory of the .zip for a file called
"package.xml.”

Once found, SmartEGM uses the new package definition XSD file to validate the contents. If
the package content passes validation, the content is used to define the package information:
in the XML file, you define the package, module and storage information. Each module points
to a physical file in the .zip file that represents the module file in a real EGM. It is the same
information as in the G2S XSD, but bundled into a .zip file.

Once the package is loaded into the SmartEGM, you can test various Download scenarios,
such as install a module, uninstall a module, and read package contents.

Creating a RadBlue format package

Finally, you can create a new package out of existing modules by creating a new .zip file
with the package.xml file, and then transferring it to an FTP site.

When you add a package on the SmartEGM, or install the package to create modules, you can verify
the installation by looking on the disk in the following areas:

 ../smart-conf/smart-egm/${EGM-ID}/modules/

 ../smart-conf/smart-egm/${EGM-ID}/packages/

A module is defined by a single file, and each module in a package has its own
directory. The .zip file may contain more than one file per module. The entire contents of
the .zip file are unpacked.

Once you have downloaded a package or installed a module, you can view those items by
using the gat.getComponentList command. Packages have a componentType of
G2S_package, and modules have a componentType of G2S_module.

The Package Definition XSD file defines the GAT authentication algorithms supported by the
module. This information is also returned in the component list. Once you know a
packageId/moduleId and a supported GAT authentication algorithm, you can execute a
gat.doVerification command.

Sample Package Definition XSD File
An XSD file that defines the package.xml file we use for the package directory (defining the
contents of a RadBlue SmartEGM package file) is part of the SmartEGM and shipped as part
of the RST installer. You can find it in the Start menu. The SmartEGM uses the package.xml
file to determine what modules are in the package, and what algorithms can be run against
each of the modules.

Our sample package is located here:
http://www.radblue.com/downloads/smartegm/packages/package-1.zip

RST Release Notes – Version 1.8 December 8, 2008

Copyright 2008 Radical Blue Gaming, Inc. All rights reserved. Page 46

About WAT
The G2S WAT class support is now complete in the SmartEGM, supporting host and EGM
controlled WAT transfers, key exchanges, etc. In the default configuration, WAT device 1 is
host controlled and device 2 is EGM controlled. The choices available on the new WAT
Transfers GUI are controlled by the G2S_interfaceMode parameter in the SmartEGM
configuration file.

G2S_hostControlled transfers – If the WAT device is configured with a hostControlled
interface, the following actions are available:

1. Get Key Pair – sends a getKeyPair request to the host.

2. Insert ID – Allows you to simulate an ID being inserted (which you can also do via
the Player Verb GUI). Once you have inserted an ID, this icon is no longer active
(With RGS, use ID number 12345678).

3. Cash Out – If the WAT device you are working with is the device identified for WAT
cashouts, the CashOut button will also be active (watStatus.cashOutToWat attribute
= “true”).

4. Remove Id – If an ID has been inserted, this icon is active and will cause the ID to be
removed.

G2S EGM Controlled transfers – If the WAT device is configured with an egmControlled
interface, the following actions are available:

1. Get Key Pair – sends a getKeyPair request to the host

2. Insert ID – Allows you to simulate an ID being inserted (which you can also do
through Player Verbs). Once you have inserted an ID, this icon is no longer active.
(With RGS, use ID number 12345678)

Once a valid ID has been inserted, the following icons become active:

1. Get Accounts – Sends a request to the host for a list of player accounts. The details
of each account are shown on the tab at the bottom of the control.

2. Get Balance – Requests the balance for the account(s) returned through the
getAccounts inquiry.

3. Transfer Funds – Allows you to initiate a transfer in either direction between the EGM
and the host.

4. Cash Out – If the WAT device you are working with is the device identified for WAT
cashouts, the Cash Out button will also be active (watStatus.cashOutToWat attribute
= “true”)

5. Remove ID – If an ID has been inserted, this icon is active and, if selected, causes
the ID to be removed.

